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Abstract 

Sensitivity  analysis  based  on  using of the adjoint  equation of radiative  transfer is 
applied to the case of atmospheric remote sensing  in the thermal spectral region 
with  non-negligeable  atmospheric scattering. Analytic  expressions for the weight- 
ing  functions  for  retrievals of temperature  and gas  mixing ratio are derived. It is 
demonstrated that these  expressions  include the case of pure  absorption as a partic- 
ular case  when  single scattering albedo of atmospheric  scattering  can  be  neglected. 

1 Introduction 

Various geophysical  applications involve modeling of radiative fluxes in the at- 
mosphere  or  simulation of observable data for  given atmospheric  models.  This 
task is accomplished by solving the differential  equation of radiative  transfer 
with  corresponding  boundary  conditions. The modeled radiative  quantities 
depend  on vertical profiles of atmospheric  parameters  and  sensitivity of them 
to these profiles is also an  important  subject of study.  The inversion of ob- 
servations  in  terms of vertical profiles of the atmospheric  parameters poses a 
similar  problem. The needs of development of new instruments  for  remote sens- 
ing  also  require  predictions how sensitive  are  measured data  to atmospheric 
profiles such as temperature  or  mixing  ratio of gaseous constituents. 

The sensitivities of radiative  quantities J to  atmospheric  parameters X 
can  be  quantitatively described by the variational derivatives S J / S X .  If, e.g., 
we observe the radiances at the  top of atmosphere J,(a) for a set of frequen- 
cies Y and/or  directions Q and  intend  to retrieve the vertical profile of an 



atmospheric  parameter X ( < )  with  respect to  some  coordinate, 5, we assume 
herewith that  there exists  an, in  general, non-linear operator  dependence be- 
tween the  radiance Ju(a) and x( [ ) .  The variations, 6 J and S X ,  are  related 
through  linear  integral  equation 

~ J ~ ( Q )  = J 
z 

The kernel in  the  integral  term of 
rameter X ,  

is the  corresponding  variational  derivative for this case. It also has a meaning 
of a weighting  function for the  parameter X ( < ) ,  which determines  the  input 
of variation 6X(C) into bJ(Q2). Also, Eq.2 gives a measure of sensititivity of 
J to X .  With weighing functions Kix)(C, s t )  computed for a set of selected 
v and/or st for some  initial  atmospheric  model,  a  corresponding  linearized 
inverse problem  can  be considered in the form of a corresponding  linear  integral 
equation (cf. Eq.1): 

/ K P ( C ,  W A X ( C )  dC = AJV(fi2). (3) 
Z 

If radiative  quantities J can  be  directly expressed analytically through  atmo- 
spheric parameters X then  their  sensitivities to these  parameters, 6J/6X can 
also be evaluated  analytically. A well-known example is given  by remote sens- 
ing of a purely  absorbing  atmosphere  in  thermal  spectral region. There is no 
dependence  on  azimuth  angle  and, for nadir viewing geometry, the  direction of 
the line of sight  can  be specified by its  zenith  angle, cos-'p. Log pressure, lnp, 
can  be  used as a vertical  coordinate. The  temperature weighting functions at 
given v and p ,  

are  analytically expressed the  atmospheric  transmittance functions at frequen- 
cies v,  tu@, p )  and  Planck  function, B,(T) which can be evaluated  for given 
models of temperature  and  atmospheric opacity. Similarly, the gas  mixing ratio 
weighting functions for retrieval of the gaseous  atmospheric  constituents, 
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are also analytically  expressed  through t , (p ,  p ) ,  B,(T) and volume absorption 
coefficient, IE, of the  constituent. Hg is the scale  height of gaseous atmosphere 
[11, P I .  
If the  atmospheric  scattering is non-negligible then  analytic expressions for 
modeled/simulated  radiative  quantities  are  not  available.  There exist a wide 
variety of numerical  methods for solution of the  differential equation of ra- 
diative  transfer that  make it possible to compute  radiative  quantities for any 
plausible atmospheric models. As for the weighting functions of corresponding 
inverse problems, the way most widely used so far is to divide the  atmosphere 
into  computationally affordable  number of layers, to vary the profiles of atmo- 
spheric parameters involved, layer by layer, to  obtain corresponding  solutions 
of the  equation of radiative  transfer  and finally to evaluate  the responses of 
radiative  quantities to  these  variations. Obviously, this  method requires much 
greater  expenditures of computing  time as compared to  the single run needed 
to model  radiances  themselves. 

There  exists  an  alternative  approach  that was introduced  into  the field of 
atmospheric  remote  sensing by Marchuk [3] more than  three decades ago. In 
general, if a linear  or  linearized  forward  equation is used to model an  object 
under  study,  then a single solution of the corresponding  adjoint  equation  can 
be used to  compute  the  sensitivities  to  all  parameters of the model. The  adjoint 
equation is similar to  its forward counterpart  and  both can be solved  by the 
same  methods. Use of this  approach  dramatically reduces the  computing  time 
needed to  compute  the  resulting  sensitvities. 

The  applications of the  adjoint  approach  to  sensitivity analysis  in  remote sens- 
ing area  started  aboud a decade ago. Box et  al. [4] have introduced  the  adjoint 
equation of radiative  transfer  (independently of Marchuk [3]) and discussed 
possible applications of it in the  sensitivity analysis.  Sensitivities of scattered 
solar radiation fluxes and  heating  rates  to  perturbations of aerosol in cloudless 
atmospheres were studied  in [5] and [6]. We applied this  approach  to  analytic 
studies of the case of thermal  radiation  in  the purely  absorbing  atmosphere [l] 
and of the case of solar  radiation reflected from the  scattering, optically  thick 
vertically  inhomogeneous planetary  atmosphere [8], [9], [lo]. Box and  Sendra 
[ll] studied  the  sensitivity of emergent radiation  to  the  shape of the phase 
function for vertically homogeneous atmosphes  with  the  intention of using 
these  results  in the  remote sensing  in the  solar  spectral region. In  their recent 
publications, [12], [13] (see also references therein)  the  practical retrieval issues 
were studied. 

Here we consider the  applications of adjoint  sensitivity  analysis to retrievals 
of temperature  and  gas mixing ratio from  remote  sensing data in the  thermal 
IR. We will address  the  formulation of the  adjoint RT problem  in a way that 
explicitly  produces its components,  the  adjoint RT equation  and  its  upper  and 
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lower boundary  conditions corresponding to their  counterparts  in  the forward 
problem of radiatve  transfer. 

We first  consider the general operator  formulation [3] resulting  in an explicit 
expression for the variational  derivatives. This expression is further applied 
to  the analysis of sensitivity of observed  radiances to vertical profiles of tem- 
perature  and  gas mixing ratio. Expressions  for  corresponding temperature 
and mixing ratio weighting  functions will be  derived. As it will be demon- 
strated,  these expressions  include the  temperature  and mixing ratio weighting 
functions for the case of pure  absorption, [l], [2] as  a  particular case if the 
atmospheric  scattering can be neglected. 

2 General  operator  formulation of the adjoint  approach 

In  this Section we present the general  methodology developed by Marchuk 
[3]. The forward  problem of radiative  transfer in the  thermal  IR for a plane- 
parallel atmosphere  can  be  written  in  the form: 

d l  1 
dr 

1 

u- + I ( r ,  u )  - 2 / p ( r ;  u,  u‘)I(r, u’) du‘ = (1 - wo(r))B(T(r)), (6) 
“I 

I (0 ,  u )  = 0) u > 0, (7) 

Here I ( r ,  u )  is the  intensity of radiation which depends on the  optical  depth r 
measured  from the upper  boundary of the  atmosphere and  on the nadir  angle, 
c0s-l u, measured  from  the  nadir  direction; p ( r ;  u,  u’) is the  phase function of 
atmospheric  scattering; wo(r)  is a single scattering albedo; B(T)  is  blackbody 
radiance at  temperature T ;  A and B(To) are  Lambertian  albedo  and  thermal 
radiance of the surface at temperature To. Because the source thermal radia- 
tion  is  isotropic,  there is no  dependence on the  azimuth angle. The frequency, 
v ,  is  implied. 

The observable  radiative quantities, J are  related to  the  total field of I in the 
form of convolution  with  some  function, W describing both  the  instrument 
and geometry of observations. The measured  radiances  can  be  presented in 
the form of convolution: 

70 1 

J ( p )  = / / W ( p ;  r, u)I(r ,  u )  du dr. 
0 -1 
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E.g., for the  instrument  with  infinitesimally small field of view placed outside 
the  atmosphere, 

Both W and I are  functions of r and u and  are defined in the  same  domain. 
Their convolution, Eq.9,  can  be considered as a scalar  product of these func- 
tions: 

Let the  forward problem of radiative  transfer, Eqs.6-8, can be represented  in 
the form of a linear  operator  equation 

where the linear  operator L combines all  operations  with  intensity I in left- 
hand  terms of Eqs.6-8 and  function S combines the inhomogeneous terms in 
the right-hand terms. Below we will use the abbreviated  notations like Eqs.11, 
12 that make the derivations  more  compact.  The general way to construct 
attributes L and S of the forward RT problem  and to derive corresponding 
attributes, L* and W of the  adjoint RT problem will be developed in  the  next 
Section.  By  definition, for a given linear  operator L,  the  adjoint  operator L* 
satisfies the  identity 

where f and g are two arbitrary  functions from the domain of L. Let  function 
I*(T,  u )  be  solution of the  linear  operator  equation 

L*I* = W, (14) 

where L* is  an  operator,  adjoint to  L and  the right-side term W in the  right 
hand  contains  the  function W defining the observed radiances, J ,  in the form 
of Eq.11. It should be noted that  in  this way, the  term W of the  adjoint 
problem  Eq.14 and its solution I* contains  the dependence on geometry of 
observations  described  here by the  parameter p .  

The first important  result of application of the adjoint  approach is that  the 
adjoint  solution I* provides a way, alternative  to Eq.11 to  compute  the ob- 
servable quantities, J :  

J = ( I* ,  S ) .  (15) 



Indeed,  multiplying  Eq.12, by I* and Eq.14 by I we have: 

( I* ,  L I )  = ( I* ,  S ) ,  

(L*I* , I )  = (WJ. 

The left  sides of Eqs.16, 17 are  equal by definition, Eq.13. Replacing the right 
hand of Eq.17 by J according to Eq.11 we immediately  obtain Eq.15. 

The second, even more  important  result of application of the  adjoint  approach 
is that  the  adjoint  solution I* together  with  the forward solution I provides 
an easily computable expression for the variational  derivatives alias weighting 
functions SJ/GX. Let J ( p )  be  the  radiative  quantities  computed by Eq.6  from 
the  solution I of the forward  problem,  Eq.7, for an  atmospheric  model specified 
by a set of vertical profiles of n atmospheric  parameters X i  (i = 1, ... n). Let 
J' be  the  radiative  quantities  computed from the solution I' of the  perturbed 
forward  problem, 

for an  atmospheric  model specified by a set of perturbed  parameters X i  = Xi+ 
6Xi resulting  into  perturbed  operator, L', and right  hand term, SI. Subtracting 
Eq.12 from  Eq.18  and keeping only the linear  variations we have: 

Multiplying  both sides of Eq.19 by I* we obtain: 

(L61, I * )  + (6L I ,  I* )  = (6S, I*) .  (20) 

On  the  other  hand,  multiplying  both sides of the  adjoint  problem, Eq.14, by 
the  variation of solution of the forward  problem, 61,  we have: 

(61,  L*I*) = ( S I , W ) .  (21) 

From the  definition of J ,  Eq.11,  the right-hand term of Eq.21 is equal to  its 
variation, 6 J .  Replacing  this  term by 6 J ,  substituting  the result into Eq.20 
and using the  definition of L*, Eq.13  applied to functions 6 1  and I* we obtain 
the expression  for variation 6 J  through  solutions I ,  I* and  variations 6L and 
6s: 
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The  variations of SS, SL, and SJ can  be expressed through  variations of at- 
mospheric parameters, &Xi using  corresponding  variational derivatives: 

Thus, the  equation for these  variations  can be rewritten  in  the form: 

Requiring that Eqs.23-25 for arbitrary  variations bXi, we obtain: 

6 J  SS SL 
-I ,   I*).  

The expression  Eq.26  provides the way of computing  the weighting func- 
tions for any  parameters  that  enter  the forward problem of radiative  transfer 
through  its  operator L and  the  right-term S. Below, this expression is used 
to  obtain  the  temperature  and  gas mixing ratio weighting functions. 

3 Formulation  of the adjoint  problem of radiative  transfer  in  a 
scattering atmosphere in thermal IR 

We first  rewrite the forward  problem of radiative  transfer, Eq.6-8 in  a  general 
form: 

LeI - se = 0 (27) 

L J  - s, = 0, r = 0, u > 0 (28) 

where the  subscripts 'e', 't' and  'b'  stand for 'equation',  upper  ('top')  and 
lower ('bottom')  boundary  conditions respectively. Operators Le, Lt and Lb 
have the form: 
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LtI = I (0 ,  u ) ,  

Operator Le is  describing the  linear  operations on I in the whole domain 
of arguments r E [O, TO] and u E [-1,1]. Unlike operator Le, operators Lt 
and Lb are  limited  in action with  respect to  both r and u. The  operator 
Lt is essentially the identity  operator  but its action is limited to  the  upper 
boundary r = 0 and  upper  hemisphere, u > 0. Similarly, the  action of the 
operator Lb is limited  to  the lower boundary, r = TO and lower hemisphere, 
u < 0. To  enforce  these  restrictions, we use appropriate weighting factors 
containing  Dirac 6-functions over r and Heavyside &"unctions  over u: 

It should be  noted  that Eqs.33, 34 remain  equivalent to  the  boundary condi- 
tions,  Eqs.31, 32 if they  are  multiplied by arbitrary functions of r and/or u 
that  are non-zero everywhere where the above weighting factors  are non-zero. 
For reasons that will be clear below (see a remark  after  Eq.45)) we multiply 
Eqs.33, 34 by u and -u respectively: 

Adding  Eqs.27,  35, 36 and moving terms  with S,, St, and sb into  the right 
side of the  resulting linear operator  equation, we obtain 

Introducing  the  function X(u) by definition 

we obtain: 
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Equation 39 has  the form of a single scalar  linear  operator  equation Eq.12 
where the linear  operator L contains  all  operations on I in the forward RT 
problem,  Eqs.6, 7, 8 or Eqs.30, 31, 32 respectively: 

In  the  remainder of this Section we derive the  operator L*, adjoint to  the 
operator L defined by Eqs.40, 30-32 using  the formal  definition,  Eq.13  applied 
to  arbitrary  functions I (T ,  u )  and I*(r ,  u )  from the domain of the  operator L: 

( L  I ,   I * )  = ( I ,  L*I*) (41) 

3.1 Case for the  lower  boundary condition with A = 0 

We first consider the  simpler case of the lower boundary  condition,  Eq.8, 
corresponding to  A = 0. Substituting Eq.40 into  Eq.41  and using the definition 
of function X ( U ) ,  Eq.38 we have: 

( L  I ,  I * )  = 
1 

= 1 du{ T d r  [US + I@, U )  - p ( r ;  U ,  u ')I(T,  u') du' I*(T,  u)  + 1 
-1 0 -1 

+ X ( U ) I ( O ,  u)I*(O, u)  + X ( - U ) I ( T o ,  U)I*(TO, u )  * I 
For the first and  third  terms  in  square  parentheses we have: 

1 du 7 d . r  u z I * ( r ,  dI  u )  = 

= du[uI(ro, u)I*(ro, u) - uI(0,  u)I*(O, u)  + 

-1 0 

--I 

dTI(r,  u )  ( - u g ) ]  dr ; 
0 

(43) 

The  integral in square  parentheses  can  be  written  in  the  form: 
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j du Idr[ jp ( r ;u ,u ’ ) l ( r ,Y ’ )du ’  1 I*(.,.) = 

= 1 du 7 dr I ( r ,  u)  [/ P ( 7 ;  U’, u)I*(r, u‘) du’ . 

-1 0 -1 
1 

1 
-1 0 -1 

(44) 

After  substitution  into Eq.42,  combining terms at r = 0 and r = 70 we have: 

( L  I ,  I * )  = 
= j d u { J d r I ( r , u ) [ - u -  dI* +I* ( r ,u )  - -Jp(r;u’,u)I*(r,u‘)du’ 1 - 

1 

d r  2 1 
-1 0 -1 

We have used a freedom of choice stated above and multiplied  Eqs.33, 34  by 
u and -u respectively, to  be  able  to combine the  terms at r = 0 and r = ro 
in Eq.45. Using the  identity 

we can  reqrite  Eq.45  in  the  form: 

( L  I ,   I * )  = 
1 70 

d l *  1 [ d r  2 

1 

= / du{ 1 drI (r ,  u )  -u- + I* ( r ,  u) - - / p ( r ;  u‘, u)I*(r ,  u‘) du’ 
-1 0 -1 

+X(-u)I(O, u)I*(O, u )  + X(u)I(ro, u)I*(ro,  u ) }  (47) 

Equation 21 may  be  written in the desired  form of scalar  product, ( I ,  L*I*),  
in  the  right side of definition,  Eq.15. Using the definition of function X(u), 
Eq.11, we have: 

L*I* = LZI* + 6(r)X(-u)L;I* + S(7-0 - r)X(u)L;I*. (48) 

Here, the  operator L: is describing  the linear  operations  on I* in  the whole 
domain of r E [O,rO] and u E [-1,1]: 

-1  
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and, as 6-functions  in  Eq.48  imply, operator L; acts at  the upper  bound- 
ary, 7 = 0 and  operator Li acts  at  the lower boundary, r = ro. Also, the 
&"unctions  limit  action of operators Lz and Li to  the lower and  upper hemi- 
spheres  respectively. With  these  limitations specified we have: 

L;I* = I*(O,u), u < 0, (50) 

L;I* = I*(ro,u), u > 0, (51) 

Operator L*, Eq.48  satisfies the  definition, Eqs.13, 41 and is  herewith  an 
operator  adjoint  to  the  operator of the forward RT problem, Eqs.6-8. Its 
component, Li defined by Eq.51  corresponds to  the simplified lower boundary 
condition of the forward RT problem,  Eq.8,  with A = 0. 

Denoting the right  side  terms of the  equation of the adjoint  RT  problem and 
of its  boundary  conditions  as, respectively, We, W,, and W b  we can  write the 
resulting  adjoint  problem of radiative  transfer  in  the following form: 

d l*  1 
d r  2 

1 

-u- + I*(r ,  u )  - - / p ( r ;  u', u)I*(r,  u') du' = We(r, u ) ,  (52) 
-1 

3.2 General  case  for  the  lower  boundary  condition  with A # 0 

Substituting Eq.40 into  Eq.41  and  using  the  definition for X(u), Eq.38, we 
have : 

( L I ,  I * )  = 

X(u)I(O, u)I*(O, u)  + (55) 

Comparing Eq.55  with  Eq.42 we see that  it contains  an extra  term  due  to 
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A # 0: 

which can  be  rewritten in the form (cf. Eq.38): 

1 0 

A A ( L I ,  I * )  = / du uO(u)I(ro, u) 2A/ I*(ro, u’)u’du’ (57) 
-1 -1 

After substitution of Eq.57 together  with Eqs.43,  44 into Eq.55, combining 
terms at r = 0, r = r0 and using the identity, Eq.46 we obtain: 

( L  I ,   I * )  = 
d l *  [ d r  

] du{ / d r I ( r ,  u )  -u- + I*(r ,  u )  - p ( r ;  u‘, u)I*(r ,  u‘) du‘ - 
-1 0 -1 1 

The right  side of Eq.58 can  be  written  in  the  form of scalar product, ( I ,  L*I*) 
in the  right  side of definition, Eq.41, if  we let  the  adjoint  operator  to be defined 
by Eq.48, with  components, L: and L,* defined by Eqs.49, 50 but  with Li now 
defined in the  form: 

Thus,  the  resulting lower boundary  condition of the adjoint  problem consid- 
ered here has  the  form: 

0 

I*(ro, u )  + 2AJ I*(ro, u‘)u’du’ = Wb(u), u > 0. (60) 
-1 

3.3 Formulation of the  adjoint  problem of radiative transfer: A summary 

The forward RT problem 
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is represented  in  the form of a single  linear operator  equation L I = S by using 
weighting  factors 

which specify the  range over r and u where each component of the System, 
Eq.61 is valid. Using a symbolic  index 2, (i = e, t ,  b) :  

L = WiLi 
i 

The linear  operator of corresponding  adjoint RT problem in the  operator  form, 
L*I = W is  obtained  directly by applying  the  definitioqEq.41,  with  arbi- 
trary I and I*.  The scalar  product ( I* ,  L I )  is further  transformed to  the form 
(L*I*,  I )  and  the  operator L*, adjoint to L,  is obtained in the form: 

L* = w;Lf 
i 

with  weighting factors wf: 

we*(r,u) = 1 
wt*(r, u )  = b(r)X(-u) 

wb*(r, u )  = S(r0 - .)X(u) 

The  form of each  linear  operator Lf is defined by the specific form of cor- 
responding  operator Li. The right-hand term of the corresponding  adjoint 
problem of radiative  transfer W is represented as a sum: 
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Its separate  components, We, W,, and W, can  be  obtained by representing 
the expression  for the observed radiances, J ,  in the form 

4 Temperature and gas mixing ratio weighting  functions 

In  this  Section we will demonstrate how the variational  relation, Eq.2.17 is 
used for evaluation of sensitivities of observed radiances to atmospheric pa- 
rameters. The concrete  atmospheric  parameters that will be considered here 
are  temperature T and volume mixing  ratio f of the absorbing  atmospheric 
constituent. 

4 . 1  Temperature  weighting functions 

We first obtain  the  temperature weighing functions, SJ/GT that will provide 
a generalization of the case of pure  absorption, Eq.4, to  the case with  atmo- 
spheric scattering. Here we assume that only temperature, ST is varied. Then 
SL E 0 and  the expression for S J ,  Eq.22 takes  the form: 

SJ = (SS, I*) .  (69) 

Substituting  the  variation of right-hand term of Eq.6, 

into Eq.69, using the explicit  form of the scalar  product,  and  rearranging  the 
multiplicands we have: 

Comparing Eq.72 with Eq.1 we obtain  the expression for temperature weighing 
functions  in the form: 
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This is a sought  generalization of the case of pure  absorption, Eq.4. To demon- 
strate  that Eq.72 is indeed a particular case of Eq.4 we consider the  adjoint 
problem of radiative  transfer, Eq.55,  56,  57, for the case of pure  absorption 
(WO = 0) with a right-hand term defined by Eq.10: 

dI* 
d r  (73) -u- + 1*(r, u)  = 6(r)S(u + p ) ,  

I*(O,u) = 0, u < 0 ,  (74) 

I*(ro,u) = 0, u > 0. (75) 

Its  solution  for  the upwelling radiation (u  = - p )  is [l]: 

I*(r ,  u) = - exp(-r/p)6(u + p ) ,  
1 
I-1 

(76) 

' and Eq.72 takes  the  form: 

Introducing  atmospheric  transmittance, t(r, p )  

t(7, PI = exP(-T/P), 

- at = -- 1 exp(-r/p), 
dr P 

we can  rewrite Eq.77 in  the form: 

Finally,  changing the vertical  coordinate  from r to p and using lnp for the 
differentiation in Eq.10 and subsequent integration, we have to multiply Eq.10 
by factor d r / d  lnp.  This results  in  the expression for pure  absorption  in  the 
form of Eq.4. 

4.2 Volume mixing ratio weighting functions 

The case for the  gas  mixing  ratio weighing functions, 6 J / 6  f needs more ana- 
lytic work because  both L and S experience  variations if the gas  mixing ratio 
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f is varied. To single  out  the  dependence of L and S on f we first consider 
the general  case of an  atmosphere consisting of two components: an known 
background atmosphere  described by the  optical  depth r and phase  function 
p(r, u )  and unknown constituent  producing  an  additional  optical  depth, d l ) ( r )  
and, in  general,  additional  atmospheric  scattering  described by phase  function 
p ( ' ) ( ~ , u )  [lo]. For the composite  optical  depth, d')(r), and phase  function, 
p(') (7, u) of such two-component atmosphere we have: 

dd')  = d r  + d d ' ) ,  (81) 

In  particular, for the  purely  absorbing gas, p(') 0 and we have: 

p(')dr(') = p dr. (83) 

We further  introduce  the optical mixing  ratio of the unknown component, f ( ' ) ,  
defined by ratio 

Then  Eqs.81  and 82 can  be  rewritten in the form: 

In  particular,  from  Eq.86  it follows that for the single scattering  albedo, wo, 
we have: 

Using Eqs.  85,  86, and 88 we can  rewrite  the forward  problem  Eqs.6-8, so 
that  atmospheric  parameters  describing  the unknown constituent, f ( l ) ( ~ )  and 
p ( l ) ( ~ ,  u) ,  enter its operator L and right-hand term S explicitly. In  our case 
of the unknown  gas component, w?) 0, and Eqs.86, 88 take  the form: 

(1 + f(l))p(') = p ,  (89) 
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Obvio~sly, f( l)  enters only Eq.6 of the forward problem. Rewriting  it in the 
differential  form  and  using the  parameters of the composite atmosphere we 
have: 

-1 

Substituting  the expression  for the  optical  depth, Eq.85, using Eqs.86, 88 and 
returning back to  the  form of differential  equation, we obtain  the  equation of 
radiative  transfer which contains f(') explicitly: 

-1  

Now  we can consider the expression for the  variation S J ,  Eq.22. For  variations 
in the  right  side of it we have: 

6s = B Sf('), (93) 

6LI = I Sf(l) ,  (94) 

Substituting Eqs.93,  94 into Eq.22 and  writing  the scalar product in it explic- 
itly we obtain  after some  rearrangements: 

S J ( p )  = / d 7 6 f ( l ) ( T )  1 d u  (B(T(7))  - I ( T ,  ~ ) ) I * ( T ,  u ) ,  (95) 
0 -1 

from  which,  comparing with Eq.1, we obtain  the expression for the  optical 
mixing ratio weighing functions  in  the form: 

To convert this expression to  that  for the gas  mixing ratio weighing functions 
we observe that for the unknown  gas constituent,  the definition of the  optical 
mixing ratio, Eq.84, can  be  rewritten in the form: 
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Thus, if only f is varied,  then 6 In f(l)  E 6 In f and we have the following chain 
of equalities: 

Using Eq.98, we obtain: 

Finally, applying Eq.29 to Eq.26 we obtain  the sought expression for the gas 
mixing ratio weighing functions: 

To demonstrate  that  the case of pure  absorption,  Eq.5 is indeed a particular 
case of Eq.101 we need the  solutions of the  adjoint problem for the case of 
pure  absorption,  Eq.6,  and of its  forward  counterpart for this case. The form of 
the forward  problem of radiative  transfer for ths case can be obtained  directly 
from Eqs.2.1-3 letting wo = 0: 

dI 
u- dT + I(T,  21) = B(T(T)),  

I (0 ,u )  = 0, u > 0, 

I ( T 0 , U )  = Bo, U < 0. 

Its solution for the upwelling radiation, u < 0, is: 
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Using integration by parts,  applying  the definition of transmittance, Eq.78 
and  assuming Bo = B ( T ( T ~ ) )  we can  rewrite Eq.105 in the form: 

70 

I ( r ,  u )  = (B(T(7))  + t ( ~ ,  p )  / t ( ~ ’ ,  p )  dB(T(r’)))G(u + p ) .  (106) 
7 

Substituting expressions  for I*,  Eq.76, and for I ,  Eq.105, into Eq.30 we have: 

Finally,  changing  from the vertical coordinate r ,  d r  = adz,   to   lnp,   d lnp = 
dz/Hg, we have to  multiply Eq.107 by factor 

We then  obtain  the expression for pure  absorption  in  the  form of Eq.5. 

5 Discussion and  conclusion 

We considered the  operator  formulation of the  adjoint  approach  to  the sensi- 
tivity  analysis  and  applied it to  the problem of evaluation of temperature  and 
mixing ratio weighting  functions for remote sensing of plane-parallel scatter- 
ing  atmospheres in thermal  IR.  The  analytic expressions for these weighting 
functions were obtained  that  contain  the  solution of the  adjoint problem of ra- 
diative  transfer I*(r ,  u ) ,  and, in the case of the mixing ratio weigting functions, 
also the  solution of the conventional,  forward  problem of radiative  transfer. It 
was demonstrated  that  obtained expressions converge to known expressions 
for the case of pure  absorption when atmospheric  scattering  can  be neglected. 
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